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1. Introduction

This work was umdertaken to assess the effects of dust and fog on generic
terminal-homing infrared (IR) sensors. Transmission and path radiance
effects for the mid- and far-JR wavebands were evaluated by usi ngthe
EOSAEL computer models FCLOUD [Turner 19871. XSCALE [Fiegel
1992], and LOWTRAN 7 [Kneizvs et al- 1989]. Note that the figures in
this document refer to a. which is the Beer's !aw extinction coefficient.
All extinctions should be interpreted as IR extinctions.

2. Computer Models and Scenarios

The primary model used for this study was FCLOUD because of its
ability to calculate path radiance and transmittance through dust and
fog clouds. The IR wavebands of interest were 3 to 5p"m and 8 to 12pm.
Path radiance calculations (in watts per meter'-steradian-micrometer)
were in terms of thermal emission, scattering. and total path radiance.
For nearly all runs. the thermal path radiance comprised well over 90
percent of the total path radiance. This report presents only the total
path radiance results.

FCLOUD computer runs were initially performed to generate trans-
mission and path radiance data for 200-m path lengths through mod-
erate fog, heavy fog, and heavy dust. These runs used extinction coef-
ficients retrieved from the Phase Function Data Base model PFNDAT
[Shirkey et al. 19S71. The phase function identifiers used were 25 for
heavy fog, 26 for moderate fog. and 5i for heavy loading dust. The
heavy and mocerate fog models used by PFNDAT were taken from
the work of Shettie and Fenn [1979]. The visibilities associated with
these models are 130 m for heavy fog and 450 m for moderate fog. For
heavy fog. the particle mode radius is 10.0 jim with a number densitv
of 20 particles/cm 3 : for moderate fog. the mode radius is 2.0 pm with
a number density of 200 particles/cm 3 . As a means of zomparlson with
FCLOUD. the models XSCALE anti LOWTRAN 7 were then run to
calculate transmission for moderate and heavy "ug. LO\VTRAN 7 was
set up to use the default model visibiliti. :q0 in for mode:ate fog
and 200 m for hearr- fog. The XSCA.LE tra, .ission runs ued visibil-
ities identical to ::i•s of FCLOUD i:: an aterupt to provide a better



comparison with the FCLOUD results. All of the firs-, set of runs as-
sumed a 200-m path length, single scattering, and a solar zenith angle
of 45 degrees. Additional FCLOUD multiple scattering calculations
were made over an 800-m path and solar angle of 15 de-rees,

In addition to moderate and heavy fog clouds, heavy loading dust
clouds were considered for this study. Such a dust consists of particles
with a bimodal size distribution that r-.-iges from a fraction of a micron
for the small mode to well over 10 pm for the large mode [Shirkey et
al- 1987.- The number density was taken to be approximately 189
partides/cm3 (comprised overwhelmingly of small-mode particles.

Note that the visibilities given for duAt in figures 1-4 and figures
95-34 were derived from the Koschmieder equation

3.912

3

where V is the visibility (meteorolosical range) in kms and 3 is the visi-
ble ex•inction coefficient. The visibility of 2.5 km for the dust runs that
used PFNDAT (shown in figures 1-4 and figures 29-30) was derived by
using the. visible extinction for heavy dust ien in table 1 of Shirke"
et al. [19871. The visibilities for the remaining dust figures %,ere esti-
mated by assuming the visible extinctions were a close approximation
to the given IR extinctions. These values were then use, directly in
the Koschmieder equation- This assumption is valid and is justified by
noting that the extinctions for heavy dust show little variability from
the visible to the far-IR (table I of Shirkey et al. 1987). This charac-
teristic of neutral extinction for heavy dust has also been observed by
Jennines, Pinnick. and Auvermann [19781 and by Pirnick. Fernandez.
and Hinds [1983].

Far al1 computer runs. unless otherwise noted, the following input
parameete-s were used.

"* Cl:,uds were assumed to bi, at ground level with source and re-
ceijCr positions at opposie ends of the cloud.

"* cloud Lrempera-:ure 1,;z C.

"* atmospheric temperature 20* C.

"* atmospheric IR optical thickness 0.3S I FCI.OD modeb.

"* background surface albedo 0.5.

"* background radiance (watts per ineter=-steradr;.n-micrometer cal-
culated by FCLOUD.

6)



e solar zenith angle 4.5 degr.es 1.5 degrees for all multiple scattering
runs).

S-solar azimuth angle of 270 degrees-

* lunar day set to zero, thus only solar irradiance was calculated.

FCLOUD by default uses a relatively low IR extinction for heavy
dust (approximately 1.5 km-'). Therefore. the following additional
FCLOUD dust runs were made using extinctions of 3.0 and 4.0 km-'.

* Path radiance. Single scattering. Solar zenith angle of 45 degrees.

200-m path length.

"* Path radiarice. Multiple scattering. Solar zenith angle of 1.5 de-
grees. SOO-m path length.

"* Transmittance. Multiple scattering. Solar zenith angle of 15 de-
grees. 800-m path length.

3. Results

3.1 FCLOU-D Calculations for Dust and Fog

Figures 1 through 12 show FCLOUD path radiance and transmission

results using extinction coefficients stored in PFNDAT. The FCLOUD
computer runs assumed single scattering, a solar zenith angle of 45
degrees. and a 200-m path length. Note that the extinction coefficient
given for each figure is the average for that waveband: the actual ext.inc-
tions vary according to the calculations performed in PFNDAT based
on the sensor's wavelength response. The figures clearly indicate that
IR transmission through fog is greatly attenuated. The attenuation due
to dust would be considered moderate.

-- 7
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3.2 LOWTRAN 7 and XSCALE Transmission
Results for Fog

Figures 13 through 20 show LOWTR7-AN 7 and XSCALE transmission
results for moderate and heavy fog. Note that LOWTRAN 7 super-
imposes the aerosol effects on the attentuation caused by atmospheric
gases. LOWTMAN 7 was run using the default visibilities (500 m for
moderate fog and 200 m for heavy fog). The XSCALE runs used vis-
ibilities identical to those of FCLOUD to provide a better means of
comparison.

Figures 21 through 2)4 directly compare the FCLOIUD results with
those of LO TRAkN 7 and XSCALE. The models show the same gen-
eral level of transmittance across each waveband. Both FCLOUD and
XSCALE use the fog models of Shettle and Fenn. thus the results pro-
duced by each are nearly identical. The falloff at 4.3 ym for LOWTRAN
7 is due to absorption by molecular CO. The higher transmittance
shown in figures 23 and 24 for LOWTMAN 7 as compared to FCLOUD
and XSCALE is a function of the significantly higher visibility of 230
m used by the LOW FRAN 7 model for heavy fog conditions.
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14



0-8
*• o.8j

-
E- 0 4
C0

0.0-
8 9 10 11 12 13

Wavelength (microns)
•OWTRAN-7 modgl

00 m path !sngth visibiy 500 m

Figure 14: Moderate fog transmit:ance (LOWTRAN 7. far 1R)

0.20.

0.10.

0.05-

0.00__
3.0 3.5 4.0 4.5 5.0

Wavelength (microns)
XSCALE model
200 m painength visibE2, 450 Mn

Figure 1-5: Modt-rate fog transmittance tXSCALE. mid litI

15



0.8 [t a

- 0.62 

,

oo0-2

'0.0I
8 9 10 11 12

Wavelength (microns)
MoCAAL E todel

mpat length vislaffy 450 km

Figure 16: Moderate fog transmittance (XSCALE. far IR)

0-015 i .. .

t "-

C, 0-010

- 0.005!-
0- -

2.5 3.0 3.5 4.0 4-5 5.0
Wavelength (mrc:cns)

kOWTRAN-7 model
rGo m path langth visi•i•y 200 rn

Figure 17: Heavy fog transmitt-nce ( LOWTRAN 7. mid 111)

16



0-0 2 0  "

0-0.15-

0-000"So.oioo -

8 9 10 11 12 13
Wavelength (microns)

MOWTRAN-7 model
00 m path length visciy 200 m

Figoure 18: Heary fog transmittance (LOWTRAN 7. far IR)



0.0020 1

* C.0015 L

- 0.00105

0.00005.

3.0 3.5 4.0 4.5 5.0
Wavelength (microns)

ff0CA L E mRqd el tmpaLhengd visibRy 130 m

Figure 19: Heavy fog transmittance (XSCALE. mid IR)

0.0030

0.0025

o0-0020

0.00 15

So0.oo1oi

0.0005 -

0.0000 ,

8 9 10 11 12
Wavelength (microns)

Figure 20: H]eavy fog tra.nsmittancc I XSCA I.E. far IR

Is,



3.3 Heavy Dust Clouds

Some additional FCLOUD computer runs were made to calculate path
radiance through a heavier dust cloud by using constant IR extinctions
of 3.0 and 4-0 kin-". This constant transmission is achieved by varying
the mass-densitv of the dust at each wavelength. Figures 25 and 26
show the path radiance for an extinction of 3.0 km-' and figures 27
and 2-8 show path radiance results for an extinction of 4.0 km-'. These
results are consistent with previous FCLOUD runs.

3.4 Multiple Scattering

The final FCLOUD runs involved the following changes in the computer
input.

" Multiple scattering.

* Solar zenith angle of 1.5 degrees

"* 800-m. path length.

Figures 29 and 30 show path radiance in which extinctions have been
calculated by using PFNDAT. Figures 31 and 32 show patsh radiance
results for an extinction of 3.0 km-'. and figures 33 and .34 show path
radiance for an extinction of 4.0 km-'.

:9
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4. Ccnclusions

This study investigated the effects of dust and fog in the .3- to 5-pm
and 8- to 12-u.m wavebands. The results show that IR transmission ,vill

C greatly attentuated in heavy fog and to a lesser extent in moderate
fog. Output from the fog runs of the FCLOUD model is corroborated
by both the LOWTRAN 7 and XSCALE models. A poor performance
for an IR sensor under these conditions is anticipated

The dust results w~ere gathered from the FCLOUD model only. The
highest IR transmission occurs -,-hen FCLOUD is run using extinctions
as taken from PFNDAT (on average about 1.-i km-') for the single scat
tering case and a 200-m cloud. Attenuation is greatest for extinctions
of 3.0 and 4.0 km-' for the multiple scattering scenario with an SOO-m
cloud. As the dust loading becomes heavier (and extinction increases).
the attenuation will become even more severe.

i t-I
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ERRATA FOR ARL-HR-35

INFRARED TRANSMISSION AND PATH RADRIACE THROUGH DUST AND FOG

Please change ARL report mumer of Infrared Transmisslie and Path Radiance
Through Dust and Fog, April 1993, from ARL-MR-35 to ARL-MR-6. Please sake
this change on the front cover and also in box 8 on the SF 298, page 1 of the
document.
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